金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

★人教版初一数学【平行线的判定】教案设计

来源:学大教育     时间:2018-03-01 20:48:51


初一数学学习需要大家掌握很多知识,在老师授课之前大家最好提前阅读一下本课的教案设计,这样才能掌握所要学习的数学重要知识点,下面学大教育网为大家带来人教版初一数学【平行线的判定】教案设计,希望能够帮助大家学好数学。

一、本节课内容的本质、地位、作用

本节课内容是“平行线的判定”(第1课时).教科书要求学生能初步应用本章所学的知识(如平行线的判定)解释生活中的现象及解决简单的实际问题,体会研究几何图形的意义;通过本节课的学习,学生学会用几何语言准确表述平行线的判定方法1、2、3,逐步向推理和用符号表示推理过渡,将实验几何与论证几何相结合,进一步培养学生几何推理的能力,为后面学生进行几何证明做好准备.

本章的重点是垂线的概念与平行线的判定和性质,因为这些知识是空间与图形领域的基础知识,在以后的学习中经常要用到,这部分内容掌握不好,将会影响后续内容的学习.本节课的教学重点是探索平行线的判定方法1、判定方法2、判定方法3.

二、教学目标分析

1.使学生能准确识别同位角、内错角、同旁内角,通过用直尺和三角板辅助画平行线,找到这个过程中的不变量,给出平行线的判定方法1,在进行简单说理训练过程中引出平行线的判定方法2和判定方法3.

2.根据两条直线被第三条直线所截的基本图形,会用符号语言表示平行线的判定方法1、判定方法2、判定方法3, 培养学生转化的数学思想和运用几何语言表述问题的能力.

3.通过动手操作、观察、思考,积累数学活动经验,感受数学思考过程的条理性,发展空间观念;在观察、操作、想象、说理、交流的过程中,发展空间观念和和抽象概括能力,初步形成积极参与数学活动、与他人合作交流的意识,激发学生学习几何图形的兴趣.

4.能初步应用本节所学的知识解释生活中的现象及解决简单的实际问题,体会研究几何图形的意义,调动学生学习几何的积极性,激发学生的求知欲.

三、教学问题诊断

安排学生动手实验检验四边形小纸板对边是否平行的数学活动,教师要求同学们分组检验,学生亲自动手实验,能亲身感受结论的真实性,让学生通过度量(或测量)四边形小纸板相对的边是否平行的活动,探索发现几何结论,然后再对结论进行说明、解释或论证,为由实验几何到论证几何的过渡做好铺垫;几何图形是从实际中抽象出来的,所以几何图形的定义、性质都是比较抽象的,这一点对于学生来说有一定的困难.为了减少学生学习的困难,在教学安排时,注意根据七年级学生认知特点,加强了直观教学,使教学内容尽量贴近学生的生活.

采用探讨问题的方式,引导学生去发现利用内错角和同旁内角判定两条直线平行.课堂上教师有意识的引导学生这样分析和思考,根据平行线的判定方法1推出平行线的判定方法2和判定方法3,对学生进行说理训练,包括后面的例题的设计都是要求学生能进行一些简单推理,而不仅仅是观察、实验、探究得出一些结论,循序渐进的突破难点.

本节课的重点是要研究平行线的判定方法,不作严格的形式化的要求.由于内容较多,因此,教学时都要突出这个重点,课堂活动也要围绕这个重点进行.在课堂上识图、画图、几何语言表述训练、例题、练习,都主要围绕如何判断两条直线平行来进行,反复利用平行线的判定方法1、判定方法2、平行线的判定方法3.

教学难点

会用符号语言表示平行线的判定方法1、判定方法2、判定方法3,培养学生转化的数学思想和运用几何语言表述问题的能力.

四、本节课的教法特点以及预期效果分析

1.本节课的教法特点

在内容呈现上充分体现认知过程,给学生提供探索与交流的时间和空间,将实验几何与论证几何有机结合;几何图形是从实际中抽象出来的,所以几何图形的定义、性质都是比较抽象的,这一点对于学生来说有一定的困难.为了减少学生学习的困难,在教学安排时,我注意根据七年级学生认知特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现为主、多媒体演示为辅的教学组织方式.在教学过程中,通过设置带有启发性和思考性的问题,创设问题情境,启发学生思考.利用计算机和《几何画板》软件,并结合学生亲自动手操作测量,让学生亲身体验知识的产生、发展和形成的过程;让学生通过度量(或测量)四边形小纸板相对的两条边是否平行,探索发现几何结论,然后再对结论进行说明、解释或论证,为由实验几何到论证几何的过渡做好铺垫;

2.预期效果分析

上述关于“平行线的判定”(第1课时)的教学设计,主要考虑了以下相关因素:

(1)数学知识与实际生活的联系

教师创设情境引导学生观察与猜想,都是一些视错觉的问题,这时学生观察得到的结论,由于视错觉原因经常不正确,安排这些观察与猜想,目的是培养学生的观察能力,激发学生的求知欲;同时也提醒学生观察要认真、仔细,有时观察得到的猜想不一定正确,还要借助于实验进行检验;观察、实验、猜想是科学技术创新过程中的一个非常重要的方法,通过观察和实验提出问题,再提出猜想和假设,然后通过说理、推理去证明假设和猜想,也是本章教学呈现内容的一个重要方式;安排学生动手实验检验四边形小纸板对边是否平行的数学活动,教师要求同学们分组检验,学生亲自动手实验,能亲身感受结论的真实性,探索发现几何结论,然后再对结论进行说明、解释或论证,为由实验几何到论证几何的过渡做好铺垫.

(2)几何命题(定理)的本质特征及其应用

课堂上教师有意识的引导学生采用探讨问题的方式,去发现利用内错角和同旁内角判定两条直线平行.这样分析和思考,根据平行线的判定方法1推出平行线的判定方法2和判定方法3,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的.对学生进行说理训练,包括后面的例题的设计都是要求学生能进行一些简单推理,而不仅仅是观察、实验、探究得出一些结论,循序渐进的突破难点.

(3)数学结论获得过程中的思维方式

为了使学生获得平行线的判定方法,本节课设置了系列活动:学生用直尺和三角板辅助画平行线,教师再利用计算机进行演示一组视错觉图,先让学生观察,然后再回答问题.学生容易接受平行线的判定方法1,教师借助《几何画板》的度量功能,师生共同检验前面的观察是否正确.在进行简单说理训练过程中引出平行线的判定方法2和判定方法3,然后,教师安排学生动手实验检验四边形小纸板对边是否平行的数学活动.接下来应用平行线的判定方法1、判定方法2、判定方法3进行练习,进行简单推理训练.通过动手操作、观察、思考,积累数学活动经验,感受数学思考过程的条理性,发展空间观念;在观察、操作、想象、说理、交流的过程中,发展空间观念和和抽象概括能力,初步形成积极参与数学活动、与他人合作交流的意识,激发学生学习几何图形的兴趣.

学大教育网为大家精心准备了人教版初一数学【平行线的判定】教案设计,希望大家能够认真借鉴,想要获取更多的初一数学教案设计请查阅学大教育网。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956